SolidWorks 模具设计 实验指导

在二十一世纪,世界制造加工业的竞争更加激烈对注塑产品 与模具的设计制造提出了新的要求。产品需求的多样性要求塑料 产品设计的多品种,复杂化。市场的快速变化要求发展产品及摸 具的快速设计制造技术。

全球性的经济竞争要求尽可能的降低产品的成本,提高产品的质量。创新,精密,复杂,高附加值已成为注塑产品的发展方向,必须寻求高效可靠敏捷柔性的注塑产品与模具设计制造系统。

SolidWorks 是三维机械设计软件市场中的主流软件。它是终端工程应用的通用 cad 平台。Imold 是 SolidWorks 软件的摸具插件专门用来进行摸具设计的。

在校学生能掌握一款三维模具设计软件是十分必要的。基于同学 们的基础和实际操作能力,我们选择了 SolidWorks2005-Imold 作 为实验软件。

相信同学们通过本实验的学习能够掌握并熟练使用 Imold2005 进行注塑摸具设计。

第一部分: imold 的介绍

第一章 imold 使用:

打开 solidworks2005, 单击主菜单中的工具选项再点击插件选项,出现如图 1-1 所示对话框勾选 imoldv6 选项,

插件	?	×
 3D Instant Website FeatureWorks IMOLDV6 PhotoWorks ✓ Save As PDF 	▲ 一 確定 取消 ▼	

单击确定。出现如图 1-2 的工具条。

在 imold 模块中进行模具设计时, 经常需要访问零件和装配体各种信息, 如果设置轻化状态, 这些信息不能进行正常访问。如果设置 了轻化在 imold 需要使用这写信息时, 系统将耗费大量时间来进行检 查和还原因此建议取消轻化。

单击 solidworks 菜单中工具——选项如图 1-3 所示 点击**大型装配体**在把自动轻化选项去掉。如图 1-4。

工具(<u>T</u>)	IMOLD	帮助(出)	
Draw	Compare	ł	
Soli	dWorks	<u>E</u> xplorer	
宏(A)		•
插件	(D)		
自定	义(()		
📴 选项	(P)		

(1-4)

第二部分 摸具设计实验指导

第一章 数据准备和项目建立:

1.1 数据准备

单击数据准备一选择塑料制件如图 1-1 所示。

(1-1)

在衍生工具条中,旋转 y 项选择 90 度, y 方向取反,单击确定。参数设置如图 1-2。使 z 轴垂直于分型面箭头方向如图 1-2-1 所示

z 轴必须与自己设计的分型面垂直否则在分型操作时分型面和分型方向将出现错误。

1.2 项目建立

单击菜单工具栏一项目管理一新建项目如图 1-3,出现如图 1-4 窗口。 命名为"模具设计",调入塑料制件 derive

Ľ	新项目
	打开项目
	关闭项目
	复制项目
	编辑项目

(1-3)

项目管理		? 🗙
项目 选项		
	项目名 模具设计 产品 调入产品····	
选择产品	2	
查找范围 (I):	🔁 模具教材 🛛 🔽 🕜 🍺 📂 🖽 -	
》 塑料制件 ■ 塑料制件 D	erived	〇英寸 前设定
文件名 (M):	塑料制件 Derived 打开 (2)	
文件类型 (I):	SolidWorks Part (*.sldprt) 💙 取消	
	○ 金加 ○ 金加 ○ 加重加 ○ 创建 ○ ○ ○ 调用 □ □ 開除 □ □ 同意 取消	

(1-4)

在代号选项中输入"练习",单位选择毫米如图 1-5

项目管理 项目 选项	
 ● 使具设计 ● 使 练习塑料制件 Derived ● 塑料制件 Derived ● 练习塑料制件 Deri ● 练习塑料制件 Deri ● 练习塑料制件 Deri 	项目名 複具设计 产品 週入产品… 工作路径: C:\Documents and Settings\zyw\桌面\複具数材\ 進项 代号: 练习 》为所有标准件增加代号 收缩率 ● 应用到模型 ● 不应用 系数: 1.00500 塑料: ABS 正
Ħ	(調査 (調査 (調査 (調査 (調用 (調査 (調用 (調査 (調用 (調査 (調用 (調査

(1-5)

单击塑料制件 impresion 如图 1-6 塑料选择 "ABS" 系数 设置为 "1.00500",

~收缩率			∨ ∃	均衡设定
 应用到模 	型〇不应用	系数:	X:	1.005
塑料: ABS			Ү:	0.000
商业名称:	Generic		Ζ:	0.000

(1-6)

◎型腔	⊙型芯 ○ 侧型芯	
💿 创建	塑料制件 Derived_Core]
○ 调用]
	開除	

(1-7)

第二章 型心型腔设计:

2.1分模面设置:单击型芯/型腔设计一分型面,如图 2-1。

点击查找如图 2-2,效果如图 2-3。点击重置,

2.2 创建浇铸曲面:

单击型芯/型腔设计——工具——延展面。如图 2-6 所示。 在缺省参考面输入 10 如图 2-7,单击创建。效果如图 2-8。

2	1999 👯 🧰 📶 💦 . 分模管理器	4 🗓 🏶 🖻 🗔
	分型线 分型面 侧型芯	
	工具 ・	补孔
	复制曲面	沿展面
	侧型芯创建 创建型芯/型腔	遮挡面 指定面属性

(2-6)

(2-7)

(2-8)

选择参考平面 MINY PLANE,在方法中选择放 样曲面如图 2-9-1

(2-9-1)

边线选择如图 2-9-2 所示的十一条边

(2-9-1)

点击确定,效果如图 2-10。

(2-10)

按照上述步骤,完成前视面的延展,只选择一条边线

(次边线为型/心型腔分界线)如图 2-11。效果如图 2-12。

按照上述步骤,完成 Maxy_Plane 面的延展如图 2-13。效果如图 2-14。

(2-13)

按照上述步骤, 完成 Maxy_Plane 面的延展如图 2-15。

(2-15)

插人(I) I具(I)	IWOLD 窗	Ц (W)	帮助(H)	
凸台/基体 (B) 切除 (C) 特征 (C) 阵列/镜向 (B)	• • •	× Ø	5 - (2 - 1 2 I (1 - 1 3 I (1 - 1)	
曲面 (S)	Þ	🔶 :	拉伸曲面(E)	
面(2)	+	A :	旋转曲面(B)	
曲线心	•	6	扫描曲面(S)	
参考几何体 (G)	•	4	放样曲面(L)	
模具(L)	•		平面区域(2)	
🤔 零件 (A)…			圆角(凹)	
镜向零件(W)			等距曲面(Q) 延展曲面(A)	
🙋 草图绘制		1	直纹曲面(D)	
🐉 30 草图		🔶 :	填充曲面(E)	
派生草图 (V)		B	中面(M)	
D <u>X</u> F/DWG		+	分型面(G)	
注解(11)	•	2	延伸曲面(2)	
	更加)	1	剪裁曲面(I)	
		- 🔗 :	解除剪裁曲面 ()	D
对象 (0)		1 👿 🗄	缝合曲面(K)	
🤮 超文本链接 (Y)		\$	移动/复制(Y)	
自定义菜单(M)			自定义菜单(M)	

单击**插入——曲面——平**

面区域如图 2-16

选	择	边	线	选	择	如	图
2-1	7-1	, 2	-17	-2 月	听示	0	

(2-16)

(2-17-1)

点击确定。最终效果如图 2-18 所示

依次完成剩余的平面。 效果如图 2-19。

选择型芯/型腔设计 — 一工具——补孔。 如图 2-20。

(2-20)

在方法中选择**边界补孔**, 平面选择如图 2-21 所示。 点击**确定**。

(2-21)

2.3 创建模块:

(2-22)

选择型芯/型腔设计 ——创建型芯/型腔, 如图 2-22 所示。 为方便设置参数点击示意图。 输入参数 L=36,W=26,Z1=23,Z2=10.。 如图 2-23 所示

(2-23)

(2-24)

效果如图 2-24 所示

在特征树下点击**固定塑料制件 derive**(单击**右键**,选择**打开零件**。 选择如图 2-25 所示。

	° * ≁	IT.H.				<u> </u>		-	
÷		(固定)	塑料制件 D	9	编辑	零件	(<u>B</u>)		
÷	Ś	(固定)	练习塑料制		打开	零件	(C)		
÷		(固定)	练习塑料制	8	隐藏	(<u>E</u>)			

选择型芯/型腔设计 —— 复制曲 面。如图 2-26 所示。在目的地中选 择型腔,去除**整加补丁面**,在特征树 中选取选择放样 1 到曲面基准 4,如 图 2-27。

(2-27)

(2-26)

点击确定,效果如图 2-28。

⁽²⁻²⁹⁾

选择型芯/型腔设计 ——复制曲面。如图 所示。在目的地中选择型芯,保留整加补 丁面,选择放样1到曲面基准4。如图 2-29。点击确定,效果如图2-30。

第三章 型腔布局及流道设计

3.1 型腔布局:

3

创建模腔布局.

编辑模腔布局...

选择型腔布局——创建型腔布局如图 3-1。

(3-1)

1	创建模腔布局
V) 🗶 ? 🛥
选择 类型	·····
	对称 🔽 🚽
方向:	
	水平 🔽
数量	
	4个型腔 🔽
	⊇坝
参数	
A1:	72
A2:	20
	显示示意图

如图 3-2 所示,数量选择 4,显示示意图,选择 A1=72,A2=20,点击确定,效果如图 3-3。

这时发现左下角与右上角是不对称的。因此选择型腔布局——编辑型腔布局, 位置变换中选择如图 3-4 两个模具型腔,点击旋转,数值为 180 如图 3-5。 点击确定,效果如图 3-6 所示。

(3-5)

(3-4)

3.2 浇口设计;

H	🔳 🔳 🏊	1	📲 🏭 🖌 📲
_	浇口设计	•	创建浇口
	流道设计	►	修订浇口
	自动删除		移动浇口

(3-7)

选择 浇注系约	充——浇口设计—
一创建浇口,	如图 3-7 所示

创建浇口 浇口类型 Edge × 示意图 ☑ 复制到所有型腔 参数 位置 点 <1@练习塑料制件[Y 创建点... ○型芯侧 ⊙ 型腔侧 方向 1 0.00deg я ¥ ☑反向

位置中选择型腔侧面,在图示 3-8 位 置选择一点,方向取反。参数设置如 图 3-9 。点击确定,效果如图 3-10。

(3-9)

(3-10)

	选择插	入—	—Į	₹部	"件——	新零件。
插入(I)	工具(T)	IMOLD	窗口	(W)	帮助(H)	
零部(4O)		×	2	现有零件/	装配体 (2)
🔊 配合	(M)			\$	新零件 (M).	
零部(牛阵列(E) 零部件(B)	•••	٠	\$	新装配体 (以[所选]零	<u>8</u>) 常部件生成装配体 (<u>A</u>)
P 智能	- 10件(2)			_	自定义菜单	1 (M)

命名为"塑料制件-型腔浇道块",点击保存。如图所示

			💷 🔛
保存在 (L):	🗀 模具教材	💌 G 💋	Þ 📂 🛄 -
 _IMOLD-Tem 练习edge1 (练习塑料制 ② 练习塑料制 ③ 塑料制件 3 塑料制件 	p 件 Derived_Cavity 件 Derived_Core erived		
文件名(M): 促存类型(m):	塑料制件_型腔浇道块		保存(<u>s</u>) -
Description	-æ₁∓ (*. þr(,*. siuþr()		
[]另存备份档(A)]保存 eDrawings 数据(E)		参考 (2)

选择型腔模块上最大的平面为草图绘制平面

绘制如图 3-11 的形状,在特征拦中选择拉伸凸出,设置拉伸条件为成 形到另一面选择如图 3-12 所示的平面,点击确定,效果如图 3-13。

(3-31)

(3-12)

(3-13)

单击编辑零部件选项,选择**插入——零部件——新零件**。命名为

"塑料制件-型芯浇道块",点击保存。如图所示。

另存为	2 🔀
	保存在 (I): 🗀 模具教材 🛛 🔽 🕜 🤌 🗁 🎞 🕶
我的最近 文档	□□_IMOLD-Temp 型料制件_型腔浇道块 ↓ 练习edge1
夏面	 ≹ 练习塑料制件 Derived_Cavity ● 练习塑料制件 Derived_Core ↓ 塑料制件 ● 塑料制件 Derived
	文件名 (図): 塑料制件_型心浇道块 (保存 (S) ▼ (保存 (S) ▼)) (保存 (S) ▼))
	l未行关型 [1]. 零件 (*. prt;*. sldprt)
(火蔵)	Jescription 日子存备份档(A) 参考(E)
	□保存 eDrawings 数据 (E)

选择型腔模块上最大的平面为草图绘制平面如图 3-14,绘制如图 3-15 的形状, 在特征拦中选择拉伸凸出,设置拉伸条件为成形到另一面如图 3-16, 点击确定,效果如图 3-17。

(3-16)

(3-17)

最终效果如图 3-18 所示

(3-18)

(3-19)

在特征树上选取上浇道块, 使其隐藏。

选择**浇注系统——浇道设计——创建浇道**,如图 3-19 所示。 创建智能点,参考对象如图 3-20 再点击文本选项选择如图 3-20 所示的线, 也就是"练习_模具 derived_Cavity"零件。智能点菜单如图 3-21 所示

(3-20)

开始点和结素点设置如图 3-22。

3-22-1.

(3-22)

智能点子			×
┌参考对象 ———		- 单位	
SketchPoint	<1>	Millim	ete
绝对坐标	参考。	5	
■ -17.93 (Δx 0	1	
-23		1	
Y ===			*
Z 5. 0249999	Δz	1	Ŷ
矩阵点子 X:1; Y:1;	2 9/ 2 9/	0	•
○文档位置 ●前文档		箭头 反向	
创建 取	消	一帮助	

(3-21)

(3-22-1)

点击确定。效果如图 3-23。

(3-23)

依次完成另两个型腔的浇道设计,

完成主浇道设计,点击创建点选择如图 3-24 所示的分浇道,

参数设置, 面控制选择"中心轴"如图 3-25

(3-24)

依次用智能点设置另一个分浇道的中点 之后开始点和结束点就选择刚才设置的

智能点,如图 3-26。

位置	▲	
开始。	点 :	
¥	点5@SmartPoint	
结束。	点 :	
Y	点6@SmartPoint	
中点	:	
Y		
	创建点	
(3-26)		

智能点子 🛛 🗙
参考对象
Face<1> Millimete
绝对坐标
23
- Y 20
z 5.0249999
面控制
○最近点
○中心
○面上 ^U : 18.93 😂 50%
⊙中心轴 U:
矩阵点子
X: 1 📚 💅 0 📚
Ү: 1 🗢 🎸 О
→ 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[创建] [取消] [帮助]

(3-25)

效果如图 3-27。

依次完成浇道设计。最终效果如图 2-28。 在特征树上选取上浇道块右键点击显示如图 3-2

第四章 模架设计

4.1模架:选择模架设计——创建模架设计,供应商选择 DME 型号选择 N1620 如图 4-1。

点击确定,效果如图 4-2。

4.2 固定型腔/型心

如图 4-3 选择显示管理——透明——增加。

创建模架
VX ?
选模架
供应商:
DME 🔽
单位:
Metric 🔽
类型:
Type R 🔽 🔽
型号:
N1616
N1625
N2020
显示详细资料
定义设置 🔺
□旋转
□定制模架
□示图信息 ▼

(4-1)

(4-3)

单击 top_clamp<1>, 使其隐藏。单击如图 4-4 所示零件点击编辑零件,

(4-4)

选择图 4-4 零件上平面 绘制草图,在点击草绘工 具栏中**绘制点**选项绘制 如图 4-5 所示绘制 22 个 点。再单击**编辑零件**。

(4-5)

(4-6)

设置名义尺寸为6,定义尺寸为20,如图4-7所示。

(4-9)

如图 4-8 定义位置中选择定义平面为上步绘制点所选的平面,定义 点为上步草图绘制的点。效果如图 4-9。再点击确定。 单击如图 4-10 的实体,单击编辑零件,隐藏固定板下部。选择 如图 4-11 平面进行草图绘制,绘制如图 4-12 所示的 22 个点。

(4-11)

(4-12)

单击智能螺钉——增加螺钉,设置 名义尺寸为6, 定义尺寸为35, 如图 4-13 所示。在定义位置中定义 平面选择如图 4-14 所示。定义

位置和定义点选择上步所画的点如图 4-15。 (4-13)

(4-15)

选镙钉 供应商

	Unbrako	v
<u>単</u> 位:		
	METRIC	*
<u>类</u> 型:		
	SHC_mm	*
<u>名</u> 义月	र न ः	
	6.0	*
名义t	<度:	
	40.0	*
<u>规</u> 格:		
	M 6×40	*
沉头孔	化深度:	
<₽	7	×
	示意图	

定义位置 ▲				
定位平面:				
① 面 <1@MB DME Type R-				
□ 反向				
定位点:				
点25@草图1@MB DI 点31@草图1@MB DI 点27@草图1@MB DI 点29@草图1@MB DI				
🗌 检查所有点				
建立座标点				

单击上步已经隐藏的两个零件,使其

显示。

(4-14)

4.3 顶出机构设计

选择顶杆设计——增加顶杆。

顶杆设置	
选择工作装配体 练习塑料制件 Derived_Impression ❤	确认 Copped
□设置当前装配体为缺省	- Calleer 帮助

(4-16)

按照图 4-16 示输入数据。点击创建点,如图 4-17 选择点的位置,

点击**确定**。

选择插入——参考几何体——基准面,如图 4-18。 选择 ER1 面为参考面,设置平移距离为 10,点击确定, 效果如图 4-19。

选择	(E) 🔺	
7	ER1@练习ejector-1@结	
-	通过直线/点(L)	
2	点和平行面(<u>P</u>)	1 年 期 2 设计语页夹 Prive
D	90.00deg	1前以整件面 上以基件面 石均基件面 原方
	10.00mm 🚍	ERI -> ER2 -> ConterPlane ->
	✓ 反向(D)) (固定) 银利制件 Dax) (固定) 杨 J 银和制件) (固定) 杨 J 曼科制件
۶	垂直于曲线(N)	 ▲ 注解 ◆ 设计适页夹 前视条准面 ▲ 上级条准面
2	曲面切平面(5)	☆ 右线基接面 + ~~~~

(4-18)

d1:

4.0

紧配孔深度:

20

显示示意图

(4-20)

¥

л

w

(4-19)

选择顶杆设计——增加顶杆。设置如图 4-20 所示。

定位点选取和上步操作同一个点。 定位平面选择上步所创建的 选择 辅助平面。点击确定, 供应商: DME ¥ 效果 4-21 如图。 单位: ¥ Metric 类型: ◇ 右视基;
▲ 原点
◇ ER1 ->
◇ ER2 -> EjectorPin TypeA ¥ CenterPlane 定位类型: (固定) 塑料制件 Der 练习塑料制件 (固定) 练习塑料制件 No Key ¥

如图 4-20,选择顶杆设计——裁减顶杆,设置如图 4-21 所示。

(4-20)

栽剪顶杆
VX ?
选择方式 ▲ ● 多个顶杆 ● 所有零件
 執剪方法 ▲ ● 曲面裁剪 ● 实体裁剪 ● 面裁剪
操作 ◆ 載剪 ○ 取消載剪 ○ 反向 ○ 重算长度

(4-21)

第五章 冷却管路设计级标准件设计

5.1 冷却管路设计:点击 imold 菜单栏中的**智能点子**图标[▲] 在如图 5-1 平面绘制三个点,各个点的 x. y. z 参数如图 5-2. 5-3. 5-4 所示

智能点子 X 参考对象 单位 😭 Face<1> Millimete 绝对坐标 × 98 * ■_Y -40 * z 30 * 面控制 ⊙ 最近点 ○中心 ○面上 ○ 中心轴 矩阵点子 X: 1 🗢 🎸 O -

(5-2)

(5-1)

智能点子 🛛 🗙	智能点子	×
-参考对象单位	参考对象	单位
Face<1> Millimete	Face<1>	Millimete
	绝对坐标	
■ _× 98 😂	■x 98	
40 🗢	■ _Y 25	
7 30	z 30	
面控制	面控制	
◎ 最近占	⊙ 最近点	
	○中心	
○ 面上	○面上	
○中心轴	○中心轴	
	∼矩阵点子	
	X: 1 📚 🌱 🕻) 😂
	Ү: 1 🗢 🎸 С) 😂
		箭头
	🔫 当前文档	反向
		- FERL
创建 取消 帮助	し切建しし取消し	帮助

(5-3)

(5-4)

然后再选择如图 5-5 平面绘制两点, x. y. z 位置如图 5-6. 5-7。

(5-6)

(5-5)

(5-7)

如图 5-8 选择冷却管路——创建冷却管路,

在入口选项中,点击如图 5-9 位置的点,选取反向,如图 5-10 长度设置为 158,点击创建。出口设置如图 5-11 所示,

点击确定,效果如图

入口选择	.
点8@SmartPoint	
创建点	

(5-11)

再选择冷却管路——创建冷却管路,在入口选项中,点击如图 5-12 位置的点,选取反向,长度为 38,点击创建。出口设置如图 5-13 所示,

(5-13)

(5-12)

再选择冷却管路——创建冷却管路,在入口选项中,点击 如图 5-14 位置的点,选取反向,长度为 38,点击创建。

(5-14)

(5-15)

再设计如图 5-15 所示的最后一条冷却管路。

在选择如图 5-16 选择冷却管,**点击编辑零件**,点击如图 5-17 所示的平面

绘制草图,绘制圆的半径为6,退出草图。在特征中选择拉伸凸出, 拉伸条件为给定深度为8。点击编辑零部件。按照上述步骤完成另 外四个冷却口

(5-16)

(5-17)

最终效果如图 5-18 所示。

5.2 标准件设计:

5.2.1 设计定位环

如图 5-19 所示选择 imold 菜单栏中标准件图标——增加标准件

R	1 #2 🖻 📰 🖤	<mark></mark>
_	増加标准件	
	修改标准件	
	删除标准件	
	旋转标准件	
	创建/修改库	
-	库检查工具	

(5-19)

在标准件菜单中输入如图 5-20 所示的参数。Imold 将自动设计出所选参数的定位环。如图所示。

选标准	佳件	
<u>供</u> 应商	3:	
	HASCO	*
<u>单</u> 位:		
	Metric	*
<u>类</u> 型:		
	General	*
<u>零</u> 件:		
	K100 Locating Ring	¥
	示意图	
选尺寸	示意图 t	•
选尺寸 D:	示意图 t	•
选尺寸);	示意图 t 60.0	•
选尺寸): H:	示意图 t 60.0	•
选尺寸): H:	示意图 t 60.0 8.0	•
选尺、 D: H: 规格:	示意图 t 60.0 8.0	×
选尺、): H: 规格:	示意图 5 60.0 8.0 K100 -60x8	

(5-20)

5.2.2 设计浇口套

再选择 imold 菜单栏中标准件图标——增加标准件选项。 在标准件菜单中输入如图 5-21-1, 5-21-2 所示的参数。

件▲ :		选尺寸 D2:	12.0	
OME 🔽 🔽			12.0	-
		L:		_
An huin			46.0	*
		R:		
			15.5	~
General 🔽 🔽		י חוס		-
		UI.		_
			3.5	*
Sprue Bushings 🛛 💟		规格:		
示意图			AGK 46-2.5-15.5	~
	件 ME ME Ietric Ieneral Imprue Bushings Imprue Sushings Imprue	件 ME ME V Ietric V Ieneral V	件 ▲ D2: ME ▼ L: letric ▼ R: ieneral ▼ D1: prue Bushings ▼ 規格: 示意图	性 ME ME ME Ietric Ietric Ietric Ietric Ietric Ietric IEtri

(5-21-1)

(5-21-2)

再单击菜单中的建立坐标点按钮选择如图 5-22 所示平面建立

(5-22)

在定位平面选项中选择如图 5-24 所示平面尖头方向要远离平面。 定位点选择上步中建立的点,点击确定按钮完成浇道套设计。

(5-24)

5.2.3 冷却管路接头设计

再选择 imold 菜单栏中标准件图标——增加标准件选项。

在标准件菜单中输入如图 5-25 所示的参数。在定位平面选项中选择 如图 5-26 所示平面尖头方向要远离平面。

(5-25)

(5-26)

定位点选择如图 5-27 入水管端面的默认中心点。按如上步骤设 计出另外两个入水管接头。最终效果如图 5-28 所示。

(5-27)

(5-28)

第六章完成模具设计

点击 imold 菜单栏中工具——开控管理——自动选项如图 6-1

🎬 🏷 💌 🔙 🧹			
材料清单	×		
连接	•	<u> </u>	
配置	•		
指定IMOLD产品			
存储所有部件	_		
开孔管理	•	选择	
去除参数		自动	

(6-1)

在开孔管理菜单中参数 设置如图 6-2 所示。 单击确定按钮,成最后设 计。

(6-2)

如图 6-3 所拾

单击 imold 菜单中工程图图标——型心/型腔视图

	i 🚥 🔜 井 😰	*
5	型芯/型腔视图	
	零件图	•
	剖面图	
_	拉件号	

出图效果如图 6-4 所示

(6-4)

由于 imold 工程图与 solidworks 软件工程图模块使用功能很相似 所以这里就不在具体介绍 imold 工程图模块了。

第三部分 练习题 : 座板模具设计 如图 101 所示

(101)

具体尺寸如图 102 所示

分模效果如图 103 所示

此练习题与上文实验指导的模具设计非常相似,具体模具设计可以依据模具设计手册自行设计尺寸和标准件,分模可以参考103图。